Chilean Universities Ranking September 2020

This project remains active, however, it was transferred to the Training Data Lab site in June 2023.

Precoding

## Packages
library(kableExtra)
library(tidyverse)

## Data
data <- read.csv("https://osf.io/mv9z8/download", fileEncoding = "UTF-8")

## Institutions Codification
usach <- subset(data, Affiliation == "USACH" | Affiliation == "OXF-USACH")
puc <- subset(data, Affiliation == "PUC" | Affiliation == "PUC-VDEM")
ua <- subset(data, Affiliation == "UA")
uach <-subset(data, Affiliation == "UACH")
uah <- subset(data, Affiliation == "UAH" | Affiliation == "UCHILE-UAH")
uai <- subset(data, Affiliation == "UAI")
uchile <- subset(data, Affiliation == "UCHILE" | Affiliation == "UCHILE-UAH")
uct <- subset(data, Affiliation == "UCT")
udd <- subset(data, Affiliation == "UDD")
udec <- subset(data, Affiliation == "UDEC")
udp <- subset(data, Affiliation == "UDP" | Affiliation == "UDP-COES" |
                Affiliation == "UDP-NYU" | Affiliation == "UDP-Leiden")
ulagos <- subset(data, Affiliation == "ULAGOS")
umayor <- subset(data, Affiliation == "UMAYOR")
unab <- subset(data, Affiliation == "UNAB")
utalca <- subset(data, Affiliation == "UTALCA")
utem <- subset(data, Affiliation == "UTEM")
uvalpo <- subset(data, Affiliation == "UVALPO")

## Dataframe Construction
Name <- c("USACH", "PUC", "UA", "UACH", "UAI", "UCHILE", "UCT", "UDD",
          "UDEC", "UDP", "ULAGOS", "UMAYOR", "UNAB", "UTALCA", "UTEM",
          "UVALPO")
Cases <- c(nrow(usach), nrow(puc), nrow(ua), nrow(uach), nrow(uai),
           nrow(uchile), nrow(uct), nrow(udd), nrow(udec), nrow(udp),
           nrow(ulagos), nrow(umayor), nrow(unab), nrow(utalca), nrow(utem),
           nrow(uvalpo))
Avg_Cites <- c(mean(usach$Cites), mean(puc$Cites), mean(ua$Cites), mean(uach$Cites),
               mean(uai$Cites), mean(uchile$Cites), mean(uct$Cites), mean(udd$Cites),
               mean(udec$Cites), mean(udp$Cites), mean(ulagos$Cites), mean(umayor$Cites),
               mean(unab$Cites), mean(utalca$Cites), mean(utem$Cites),mean(uvalpo$Cites))
Cum_Cites <- c(sum(usach$Cites), sum(puc$Cites), sum(ua$Cites), sum(uach$Cites),
               sum(uai$Cites), sum(uchile$Cites), sum(uct$Cites), sum(udd$Cites),
               sum(udec$Cites), sum(udp$Cites), sum(ulagos$Cites), sum(umayor$Cites),
               sum(unab$Cites), sum(utalca$Cites), sum(utem$Cites), sum(uvalpo$Cites))
Avg_H_Index <- c(mean(usach$H_Index), mean(puc$H_Index), mean(ua$H_Index),
                 mean(uach$H_Index), mean(uai$H_Index), mean(uchile$H_Index),
                 mean(uct$H_Index), mean(udd$H_Index), mean(udec$H_Index),
                 mean(udp$H_Index), mean(ulagos$H_Index), mean(umayor$H_Index),
                 mean(unab$H_Index), mean(utalca$H_Index), mean(utem$H_Index),
                 mean(uvalpo$H_Index))
Cum_H_Index <- c(sum(usach$H_Index), sum(puc$H_Index), sum(ua$H_Index),
                 sum(uach$H_Index), sum(uai$H_Index), sum(uchile$H_Index), sum(uct$H_Index),
                 sum(udd$H_Index), sum(udec$H_Index), sum(udp$H_Index), sum(ulagos$H_Index),
                 sum(umayor$H_Index), sum(unab$H_Index), sum(utalca$H_Index),
                 sum(utem$H_Index), sum(uvalpo$H_Index))
Inv_Avg_Index <- Avg_H_Index*-1
Inv_Cum_Index <- Cum_H_Index*-1

Cumulative Ranking

Inst_Cum <- data.frame(Name, Cases, Cum_Cites, Cum_H_Index, Inv_Cum_Index)
Inst_Cum[is.na(Inst_Cum)] <- 0
Inst_Cum <- within(Inst_Cum, Quartile <- as.integer(cut(Inv_Cum_Index,
                                                        quantile(Inv_Cum_Index,
                                                                 probs = 0:4/4),
                                                        include.lowest = TRUE)))
Inst_Cum$Inv_Cum_Index <- NULL
Inst_Cum <- Inst_Cum[order(-Inst_Cum$Cum_H_Index, -Inst_Cum$Cum_Cites), ]
Inst_Cum$Cum_Cites <- format(Inst_Cum$Cum_Cites, big.mark = ",")
rownames(Inst_Cum) <- NULL
NameCasesCum_CitesCum_H_IndexQuartile
PUC2616,5052351
UCHILE2111,0982081
UDP1715,9961841
USACH137,7711121
UDD71,389432
UDEC91,441412
UAI81,579392
UACH21,601322
UCT6419253
UTALCA11,083183
UVALPO11,016143
UA313183
UNAB128674
ULAGOS218274
UMAYOR27354
UTEM17844
Note:
Compiled using data from the CPS-Ranking. Data collected on September 5, 2020.

Average Ranking

Inst_Avg <- data.frame(Name, Cases, Avg_Cites, Avg_H_Index, Inv_Avg_Index)
Inst_Avg[is.na(Inst_Avg)] <- 0
Inst_Avg <- within(Inst_Avg, Quartile <- as.integer(cut(Inv_Avg_Index,
                                                        quantile(Inv_Avg_Index,
                                                                 probs = 0:4/4),
                                                        include.lowest = TRUE)))
Inst_Avg$Inv_Avg_Index <- NULL
Inst_Avg <- Inst_Avg[order(-Inst_Avg$Avg_H_Index, -Inst_Avg$Avg_Cites), ]
rownames(Inst_Avg) <- NULL
Avg_Cites <- format(round(Inst_Avg$Avg_Cites, 2), nsmall = 2, big.mark = ",")
Avg_H_Index <- format(round(Inst_Avg$Avg_H_Index, 2), nsmall = 2, big.mark = ",")
Quartile <- Inst_Avg$Quartile
Inst_Avg <- select(Inst_Avg, Name, Cases)
Inst_Avg <- data.frame(Inst_Avg, Avg_Cites, Avg_H_Index, Quartile)
NameCasesAvg_CitesAvg_H_IndexQuartile
UTALCA11,083.0018.001
UACH2800.5016.001
UVALPO11,016.0014.001
UDP17940.9410.821
UCHILE21528.489.902
PUC26634.819.042
USACH13597.778.622
UNAB1286.007.002
UDD7198.436.143
UAI8197.384.883
UDEC9160.114.563
UCT669.834.173
UTEM178.004.004
ULAGOS291.003.504
UA343.672.674
UMAYOR236.502.504
Note:
Compiled using data from the CPS-Ranking. Data collected on September 5, 2020.
Bastián González-Bustamante
Bastián González-Bustamante
Post-doctoral Researcher

Post-doctoral Researcher in Computational Social Science and a lecturer in Governance and Development at the Institute of Public Administration at the Faculty of Governance and Global Affairs at Leiden University, Netherlands. Lecturer at the School of Public Administration at Universidad Diego Portales and Research Associate in Training Data Lab, Chile.