Chilean Institutions Ranking March 2020

This project remains active, however, it was transferred to the Training Data Lab site in June 2023.

Precoding

## Packages
library(kableExtra)
library(tidyverse)

## Data
## data <- read.csv("20200305_ranking.csv")
data <- read.csv("https://osf.io/8hnx3/download", fileEncoding = "UTF-8")

## Institutions Codification
anepe <- subset(data, Affiliation == "ANEPE")
coes <- subset(data, Affiliation == "COES" | Affiliation == "UDP-COES" |
                 Affiliation == "LSE-COES")
iipss <- subset(data, Affiliation == "IIPSS")
il <- subset(data, Affiliation == "IL")
usach <- subset(data, Affiliation == "USACH" | Affiliation == "OXF-USACH")
puc <- subset(data, Affiliation == "PUC" | Affiliation == "PUC-VDEM")
ua <- subset(data, Affiliation == "UA")
uach <-subset(data, Affiliation == "UACH")
uah <- subset(data, Affiliation == "UAH" | Affiliation == "UCHILE-UAH")
uai <- subset(data, Affiliation == "UAI")
uchile <- subset(data, Affiliation == "UCHILE" | Affiliation == "UCHILE-UAH")
uct <- subset(data, Affiliation == "UCT")
udd <- subset(data, Affiliation == "UDD")
udec <- subset(data, Affiliation == "UDEC")
udp <- subset(data, Affiliation == "UDP" | Affiliation == "UDP-COES" |
                Affiliation == "UDP-NYU" | Affiliation == "UDP-Leiden")
ulagos <- subset(data, Affiliation == "ULAGOS")
umayor <- subset(data, Affiliation == "UMAYOR")
unab <- subset(data, Affiliation == "UNAB")
utalca <- subset(data, Affiliation == "UTALCA")
utem <- subset(data, Affiliation == "UTEM")
uvalpo <- subset(data, Affiliation == "UVALPO")

## Dataframe Construction
Name <- c("ANEPE", "COES", "IIPSS", "IL", "USACH", "PUC", "UA", "UACH", "UAI",
          "UCHILE", "UCT", "UDD", "UDEC", "UDP", "ULAGOS", "UMAYOR", "UNAB",
          "UTALCA", "UTEM", "UVALPO")
Cases <- c(nrow(anepe), nrow(coes), nrow(iipss), nrow(il), nrow(usach), nrow(puc),
           nrow(ua), nrow(uach), nrow(uai), nrow(uchile), nrow(uct), nrow(udd),
           nrow(udec), nrow(udp), nrow(ulagos), nrow(umayor), nrow(unab),
           nrow(utalca), nrow(utem), nrow(uvalpo))
Avg_Cites <- c(mean(anepe$Cites), mean(coes$Cites), mean(iipss$Cites), mean(il$Cites),
               mean(usach$Cites), mean(puc$Cites), mean(ua$Cites), mean(uach$Cites),
               mean(uai$Cites), mean(uchile$Cites), mean(uct$Cites), mean(udd$Cites),
               mean(udec$Cites), mean(udp$Cites), mean(ulagos$Cites), mean(umayor$Cites),
               mean(unab$Cites), mean(utalca$Cites), mean(utem$Cites),mean(uvalpo$Cites))
Cum_Cites <- c(sum(anepe$Cites), sum(coes$Cites), sum(iipss$Cites), sum(il$Cites),
               sum(usach$Cites), sum(puc$Cites), sum(ua$Cites), sum(uach$Cites),
               sum(uai$Cites), sum(uchile$Cites), sum(uct$Cites), sum(udd$Cites),
               sum(udec$Cites), sum(udp$Cites), sum(ulagos$Cites), sum(umayor$Cites),
               sum(unab$Cites), sum(utalca$Cites), sum(utem$Cites), sum(uvalpo$Cites))
Avg_H_Index <- c(mean(anepe$H_Index), mean(coes$H_Index), mean(iipss$H_Index),
                 mean(il$H_Index), mean(usach$H_Index), mean(puc$H_Index),
                 mean(ua$H_Index), mean(uach$H_Index), mean(uai$H_Index),
                 mean(uchile$H_Index), mean(uct$H_Index), mean(udd$H_Index),
                 mean(udec$H_Index), mean(udp$H_Index), mean(ulagos$H_Index),
                 mean(umayor$H_Index), mean(unab$H_Index), mean(utalca$H_Index),
                 mean(utem$H_Index), mean(uvalpo$H_Index))
Cum_H_Index <- c(sum(anepe$H_Index), sum(coes$H_Index), sum(iipss$H_Index),
                 sum(il$H_Index),sum(usach$H_Index), sum(puc$H_Index), sum(ua$H_Index),
                 sum(uach$H_Index), sum(uai$H_Index), sum(uchile$H_Index), sum(uct$H_Index),
                 sum(udd$H_Index), sum(udec$H_Index), sum(udp$H_Index), sum(ulagos$H_Index),
                 sum(umayor$H_Index), sum(unab$H_Index), sum(utalca$H_Index),
                 sum(utem$H_Index), sum(uvalpo$H_Index))
Inv_Avg_Index <- Avg_H_Index*-1
Inv_Cum_Index <- Cum_H_Index*-1

Cumulative Ranking

Inst_Cum <- data.frame(Name, Cases, Cum_Cites, Cum_H_Index, Inv_Cum_Index)
Inst_Cum[is.na(Inst_Cum)] <- 0
Inst_Cum <- within(Inst_Cum, Quartile <- as.integer(cut(Inv_Cum_Index,
                                                        quantile(Inv_Cum_Index,
                                                                 probs = 0:4/4),
                                                        include.lowest = TRUE)))
Inst_Cum$Inv_Cum_Index <- NULL
Inst_Cum <- Inst_Cum[order(-Inst_Cum$Cum_H_Index, -Inst_Cum$Cum_Cites), ]
Inst_Cum$Cum_Cites <- format(Inst_Cum$Cum_Cites, big.mark = ",")
rownames(Inst_Cum) <- NULL
NameCasesCum_CitesCum_H_IndexQuartile
PUC2615,7522341
UCHILE199,9721891
UDP1713,3241701
USACH136,8721011
COES46,452741
UDD71,225422
UAI81,396372
UDEC91,216372
UCT5356222
ULAGOS3742192
UTALCA1977153
UACH1727153
UNAB126383
UA39873
ANEPE14853
UMAYOR26534
UTEM15534
IIPSS14334
UVALPO13134
IL1524
Note:
Compiled using data from the CPS-Ranking. Data collected on March 5, 2020.

Average Ranking

Inst_Avg <- data.frame(Name, Cases, Avg_Cites, Avg_H_Index, Inv_Avg_Index)
Inst_Avg[is.na(Inst_Avg)] <- 0
Inst_Avg <- within(Inst_Avg, Quartile <- as.integer(cut(Inv_Avg_Index,
                                                        quantile(Inv_Avg_Index,
                                                                 probs = 0:4/4),
                                                        include.lowest = TRUE)))
Inst_Avg$Inv_Avg_Index <- NULL
Inst_Avg <- Inst_Avg[order(-Inst_Avg$Avg_H_Index, -Inst_Avg$Avg_Cites), ]
rownames(Inst_Avg) <- NULL
Avg_Cites <- format(round(Inst_Avg$Avg_Cites, 2), nsmall = 2, big.mark = ",")
Avg_H_Index <- format(round(Inst_Avg$Avg_H_Index, 2), nsmall = 2, big.mark = ",")
Quartile <- Inst_Avg$Quartile
Inst_Avg <- select(Inst_Avg, Name, Cases)
Inst_Avg <- data.frame(Inst_Avg, Avg_Cites, Avg_H_Index, Quartile)
NameCasesAvg_CitesAvg_H_IndexQuartile
COES41,613.0018.501
UTALCA1977.0015.001
UACH1727.0015.001
UDP17783.7610.001
UCHILE19524.849.951
PUC26605.859.002
UNAB1263.008.002
USACH13528.627.772
ULAGOS3247.336.332
UDD7175.006.002
ANEPE148.005.003
UAI8174.504.623
UCT571.204.403
UDEC9135.114.113
UTEM155.003.003
IIPSS143.003.003
UVALPO131.003.003
UA332.672.334
IL15.002.004
UMAYOR232.501.504
Note:
Compiled using data from the CPS-Ranking. Data collected on March 5, 2020.
Bastián González-Bustamante
Bastián González-Bustamante
Post-doctoral Researcher

Post-doctoral Researcher in Computational Social Science and a lecturer in Governance and Development at the Institute of Public Administration at the Faculty of Governance and Global Affairs at Leiden University, Netherlands. Lecturer at the School of Public Administration at Universidad Diego Portales and Research Associate in Training Data Lab, Chile.