Chilean Universities Ranking June 2020

This project remains active, however, it was transferred to the Training Data Lab site in June 2023.

Precoding

## Packages
library(kableExtra)
library(tidyverse)

## Data
data <- read.csv("https://osf.io/zc7d8/download", fileEncoding = "UTF-8")

## Institutions Codification
usach <- subset(data, Affiliation == "USACH" | Affiliation == "OXF-USACH")
puc <- subset(data, Affiliation == "PUC" | Affiliation == "PUC-VDEM")
ua <- subset(data, Affiliation == "UA")
uach <-subset(data, Affiliation == "UACH")
uah <- subset(data, Affiliation == "UAH" | Affiliation == "UCHILE-UAH")
uai <- subset(data, Affiliation == "UAI")
uchile <- subset(data, Affiliation == "UCHILE" | Affiliation == "UCHILE-UAH")
uct <- subset(data, Affiliation == "UCT")
udd <- subset(data, Affiliation == "UDD")
udec <- subset(data, Affiliation == "UDEC")
udp <- subset(data, Affiliation == "UDP" | Affiliation == "UDP-COES" |
                Affiliation == "UDP-NYU" | Affiliation == "UDP-Leiden")
ulagos <- subset(data, Affiliation == "ULAGOS")
umayor <- subset(data, Affiliation == "UMAYOR")
unab <- subset(data, Affiliation == "UNAB")
utalca <- subset(data, Affiliation == "UTALCA")
utem <- subset(data, Affiliation == "UTEM")
uvalpo <- subset(data, Affiliation == "UVALPO")

## Dataframe Construction
Name <- c("USACH", "PUC", "UA", "UACH", "UAI", "UCHILE", "UCT", "UDD",
          "UDEC", "UDP", "ULAGOS", "UMAYOR", "UNAB", "UTALCA", "UTEM",
          "UVALPO")
Cases <- c(nrow(usach), nrow(puc), nrow(ua), nrow(uach), nrow(uai),
           nrow(uchile), nrow(uct), nrow(udd), nrow(udec), nrow(udp),
           nrow(ulagos), nrow(umayor), nrow(unab), nrow(utalca), nrow(utem),
           nrow(uvalpo))
Avg_Cites <- c(mean(usach$Cites), mean(puc$Cites), mean(ua$Cites), mean(uach$Cites),
               mean(uai$Cites), mean(uchile$Cites), mean(uct$Cites), mean(udd$Cites),
               mean(udec$Cites), mean(udp$Cites), mean(ulagos$Cites), mean(umayor$Cites),
               mean(unab$Cites), mean(utalca$Cites), mean(utem$Cites),mean(uvalpo$Cites))
Cum_Cites <- c(sum(usach$Cites), sum(puc$Cites), sum(ua$Cites), sum(uach$Cites),
               sum(uai$Cites), sum(uchile$Cites), sum(uct$Cites), sum(udd$Cites),
               sum(udec$Cites), sum(udp$Cites), sum(ulagos$Cites), sum(umayor$Cites),
               sum(unab$Cites), sum(utalca$Cites), sum(utem$Cites), sum(uvalpo$Cites))
Avg_H_Index <- c(mean(usach$H_Index), mean(puc$H_Index), mean(ua$H_Index),
                 mean(uach$H_Index), mean(uai$H_Index), mean(uchile$H_Index),
                 mean(uct$H_Index), mean(udd$H_Index), mean(udec$H_Index),
                 mean(udp$H_Index), mean(ulagos$H_Index), mean(umayor$H_Index),
                 mean(unab$H_Index), mean(utalca$H_Index), mean(utem$H_Index),
                 mean(uvalpo$H_Index))
Cum_H_Index <- c(sum(usach$H_Index), sum(puc$H_Index), sum(ua$H_Index),
                 sum(uach$H_Index), sum(uai$H_Index), sum(uchile$H_Index), sum(uct$H_Index),
                 sum(udd$H_Index), sum(udec$H_Index), sum(udp$H_Index), sum(ulagos$H_Index),
                 sum(umayor$H_Index), sum(unab$H_Index), sum(utalca$H_Index),
                 sum(utem$H_Index), sum(uvalpo$H_Index))
Inv_Avg_Index <- Avg_H_Index*-1
Inv_Cum_Index <- Cum_H_Index*-1

Cumulative Ranking

Inst_Cum <- data.frame(Name, Cases, Cum_Cites, Cum_H_Index, Inv_Cum_Index)
Inst_Cum[is.na(Inst_Cum)] <- 0
Inst_Cum <- within(Inst_Cum, Quartile <- as.integer(cut(Inv_Cum_Index,
                                                        quantile(Inv_Cum_Index,
                                                                 probs = 0:4/4),
                                                        include.lowest = TRUE)))
Inst_Cum$Inv_Cum_Index <- NULL
Inst_Cum <- Inst_Cum[order(-Inst_Cum$Cum_H_Index, -Inst_Cum$Cum_Cites), ]
Inst_Cum$Cum_Cites <- format(Inst_Cum$Cum_Cites, big.mark = ",")
rownames(Inst_Cum) <- NULL
NameCasesCum_CitesCum_H_IndexQuartile
PUC2515,5362291
UCHILE2010,4652001
UDP1714,0781721
USACH127,1691031
UDD71,288422
UDEC91,289402
UAI81,458372
ULAGOS3788202
UCT4333183
UTALCA11,023163
UVALPO2955163
UACH1756153
UNAB127684
UA310774
UMAYOR26834
UTEM15734
Note:
Compiled using data from the CPS-Ranking. Data collected on June 2, 2020.

Average Ranking

Inst_Avg <- data.frame(Name, Cases, Avg_Cites, Avg_H_Index, Inv_Avg_Index)
Inst_Avg[is.na(Inst_Avg)] <- 0
Inst_Avg <- within(Inst_Avg, Quartile <- as.integer(cut(Inv_Avg_Index,
                                                        quantile(Inv_Avg_Index,
                                                                 probs = 0:4/4),
                                                        include.lowest = TRUE)))
Inst_Avg$Inv_Avg_Index <- NULL
Inst_Avg <- Inst_Avg[order(-Inst_Avg$Avg_H_Index, -Inst_Avg$Avg_Cites), ]
rownames(Inst_Avg) <- NULL
Avg_Cites <- format(round(Inst_Avg$Avg_Cites, 2), nsmall = 2, big.mark = ",")
Avg_H_Index <- format(round(Inst_Avg$Avg_H_Index, 2), nsmall = 2, big.mark = ",")
Quartile <- Inst_Avg$Quartile
Inst_Avg <- select(Inst_Avg, Name, Cases)
Inst_Avg <- data.frame(Inst_Avg, Avg_Cites, Avg_H_Index, Quartile)
NameCasesAvg_CitesAvg_H_IndexQuartile
UTALCA11,023.0016.001
UACH1756.0015.001
UDP17828.1210.121
UCHILE20523.2510.001
PUC25621.449.162
USACH12597.428.582
UVALPO2477.508.002
UNAB1276.008.002
ULAGOS3262.676.673
UDD7184.006.003
UAI8182.254.623
UCT483.254.503
UDEC9143.224.444
UTEM157.003.004
UA335.672.334
UMAYOR234.001.504
Note:
Compiled using data from the CPS-Ranking. Data collected on June 2, 2020.
Bastián González-Bustamante
Bastián González-Bustamante
Post-doctoral Researcher

Post-doctoral Researcher in Computational Social Science and a lecturer in Governance and Development at the Institute of Public Administration at the Faculty of Governance and Global Affairs at Leiden University, Netherlands. Lecturer at the School of Public Administration at Universidad Diego Portales and Research Associate in Training Data Lab, Chile.